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1 Introduction

Accurate numerical simulations of complex multiscale compressible viscous

flows, especially high speed turbulence combustion and acoustics, demand

high order schemes with adaptive numerical dissipation controls. Standard

high resolution shock-capturing methods are too dissipative to capture the

small scales and/or long-time wave propagations without extreme grid refine-
ments and small time steps. An integrated approach for the control of numer-

ical dissipation in high order schemes with incremental studies was initiated

in [15, 16, 9] and summarized in [17]. Here we further refine the analysis on,
and improve the understanding of the adaptive numerical dissipation control

strategy.
Basically, the development of these schemes focuses on high order nondis-

sipative schemes and takes advantage of the progress that has been made for
the last 30 years in numerical methods for conservation laws, such as tech-

niques for imposing boundary conditions, techniques for stability at shock

waves, and techniques for stable and accurate long-time integration. We con-

centrate on high order centered spatial discretizations and a fourth-order

Runge-Kutta temporal discretizations as the base scheme. Near the bound-
aries, the base scheme has stable boundary difference operators [12]. To fur-

ther enhance stability, the split form of the inviscid flux derivatives [5] is

frequently used for smooth flow problems. To enhance nonlinear stability,

linear high order numerical dissipations are employed away from disconti-

nuities, and nonlinear filters are employed after each time step in order to

suppress spurious oscillations near discontinuities to minimize the smearing
of turbulent fluctuations.

Although these schemes are built from many components, each of which

is well-known, it is not entirely obvious how the different components be best
connected. For example, the nonlinear filter could instead have been built

into the spatial discretization, so that it would have been activated at each

stage in the Runge-Kutta time stepping. We could think of a mechanism that
activates the split form of the equations only at some parts of the domain.

Another issue is how to define good sensors for determining in which parts

of the computational domain a certain feature should be filtered by the ap-
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propriatenumericaldissipation.Forthepresentstudyweemploya wavelet
techniqueintroducedin [9]assensors.Here,themethodisbrieflydescribed
withselectedm_mericalexperiments.

2 Base Schemes and Linear Numerical Dissipations

Consider a conservation law

ut + f(u)._ = O.

By a semi-discrete approximation

auj(t)-- + = o,
dt

where D is a centered finite-difference operator, and uj (t) is the approxima-

tion of u(xj, t). A sixth-order spatial central operator

Duj = (-uj-3 + 9uj_o_ - 45uj_1 + 45uj+t - 9uj+2 + uj+a)/(60Ax) (1)

is used in our numerical examples. The resulting base scheme with a fourth-

order Runge-Kutta in time is denoted by CEN66-RK4. Studies also were

perform on the fourth and eighth-order centered schemes. The former is less
accurate and the latter exhibits minor improvement and with a wider stencil

and more complicated boundary operators over their sixth-order counterpart.

2.1 Boundary Operators

On the domain j = 1,2,...,N, the operator (1) traditionally applied at

the points j = 4, 5,...,N - 3 with lower order centered and/or one-sided

operators for j = 2, 3 and j = N - 2, N - 1. In order to have a stable initial-

boundary value problem, non-traditional boundary operators that have the

summation by parts (SBP) property are used. This means that in a weighted

discrete scalar product,

N,N

(lt,V)h = _ O'i,jtliVj Ax

i=l,j=l

with aid a positive definite matrix and h = Ax the fixed grid spacing, we

have the property

(u, Dv)h = --(Du,v)h + ulvvN - ulvl. (2)

This implies that whenever stability can be obtained for the PDE by use of

integration by parts, the same stability estimate can be made for the differ-

ence approximation by use of (2). Property 2 involved boundary operators
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forgridpointsfurtherawayfromtheboundarythantile traditionalapproach
[12].

In thecomputationsbelowweuseboundaryoperatorshavingtheSBP
propertyin a diagonalscalarproduct,andwhicharethird-orderaccurate.
DevelopmentofSBPoperatorswasdonebyKreissin the1970s.Later in [7],

[12], tile theory was revived and extended.

2.2 Entropy Splitting of the Inviscid Flux Derivatives

If tile above conservation law can be symmetrized by a change of variables,

u = u(w), then
u(v& + f_ = O,

with fw = f,u_ symmetric. If we furthermore assume that the flux function

is homogeneous f(Aw) = AZf(w), with fi # -1, one can show that flf = fww.

The thermally perfect gas dynamics have a family of variable transformations

u = u(w,/3), defined by w = E_,, which give a homogeneous flux function.

Here E(u,/3) is an entropy function of the conservation law.

Under the above assumption (/3 < _ or/3 > 0 for a perfect gas), the
flux derivative can be split, resulting in the following form

_,_+ I_ + _7-_l_w_ = 0.

Taking the inner product with w, gives

-(/3 + 1)(w,ut) = fl(w, f_) + (w, f_u,z) = 9(w, f_) + (f_w,w_).

Integration by parts in space and the homogeneity property flf = f_w, give

(/3 + 1)(w, ut) = --[wTfww]ba •

Homogeneity of the change of variables gives

d (w, u_w) = (¢/+ 1)(ut, w) = --[wT f_w]_.

Remark: The estimate (3) can be shown to be identical to

d/b

(3)

obtained by integrating the entropy equation, Et + F, = O, in space. Here F
is the so called the entropy flux function.

It follows that wu_,w = (fl+ 1)E(u), see [13]. In [5] the entropy splitting is
extended to conservation laws with nonhomogeneous flux functions. Formulas

for symmetrizing the compressible Euler equations are given in [3]. Formulas
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propriate numerical dissipation. For the present study we employ a wavelet

technique introduced in [9] as sensors. Here, the method is briefly described

with selected numerical experiments.

2 Base Schemes and Linear Numerical Dissipations

Consider a conservation law

ut + f(u),_ = O.

By a semi-discrete approximation

d ,j(t)
dt + Df(uj) = O,

where D is a centered finite-difference operator, and uj(t) is the approxima-

tion of u(xj, t). A sixth-order spatial central operator

Duj = (-uj-a + 9uj-2 - 45uj-z + 45Uj+l - 9uj+2 -t- uj+a)/(60Ax) (1)

is used in our numerical examples. The resulting base scheme with a fourth-

order Runge-Kutta in time is denoted by CEN66-RK4. Studies also were

perform on the fourth and eighth-order centered schemes. The former is less

accurate and the latter exhibits minor improvement and with a wider stencil

and more complicated boundary operators over their sixth-order counterpart.

2.1 Boundary Operators

On the domain j = 1,2,...,N, the operator (1) traditionally applied at

the points j = 4, 5,...,N - 3 with lower order centered and/or one-sided

operators for j = 2, 3 and j = N - 2, N - 1. In order to have a stable initial-

boundary value problem, non-traditional boundary operators that have the

summation by parts (SBP) property are used. This means that in a weighted

discrete scalar product,

N,N

(ll',V)h = _ _ri,jTlivjAX

i=l,j=l

with cri,j a positive definite matrix and h = Ax the fixed grid spacing, we

have the property

(u, Dv)h = -(Du,v)h + UNVN -- UlVz. (2)

This implies that whenever stability can be obtained for the PDE by use of

integration by parts, the same stability estimate can be made for the differ-

ence approximation by use of (2). Property 2 involved boundary operators
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for entropy splitting of a perfect gas case are given in [2], and for a thermally

perfect gas case are given in [16].
The above entropy splitting was used in a numerical method in [2], where

the semi-discrete approximation was written as

duj(t) _ fl Df(uj)- 1--_fw(uj)Dwj. (4)
dt fl+l ,_+1

Here, D is a difference operator, having the summation by parts property.

Due to the SBP property, the relation

d w
_( ,u_,W)h = --w_fw(wN)WN + WT fw(Wl) w' (5)

in the discrete scalar product follows in the same way as was shown for

the PDE. In the special case of periodic boundary conditions, the boundary

terms disappear, and we conclude that the integrated entropy (w, u_w)h is

constant.

2.3 High Order Linear Numerical Dissipation/Filter

Numerical dissipation is normally needed in conjunction with entropy split-

ting. To minimize the lost of accuracy, we employ linear high order numerical

dissipation obtained by adding an operator of the form

d(-1)q-_ax 2_-_ (O+D_)%

to the base scheme of order q + 2 (or as a linear filter after the completion

of the full step of the time discretization). Here d is a tunable parameter,
and Ax is the grid spacing. The divided difference operators are defined by

D+uj = (uj+l -uj)/Ax, and D_uj = D+uj-1. The dissipation operator
has an order of accuracy 2q - 1, and dissipation of order 2q. It is well known

[6], [8], how to make a boundary modification to obtain an operator which is
semi-bounded, i.e., which has the property

< 0. (6)

If an extra stabilizing mechanism is desired for difference approximations on

the split form, it is natural to define the dissipation on the entropy variables.

The approximation (4) then becomes

duj(t) /3 1Df(uj ) _ --_f_(uj)Dwj +d(-1)q-lAx2q-'(D+D-)qwJ •
dt _ + (7)

If the SBP property and the semi-boundedness for the dissipation both hold
in the same scalar product, we take the scalar product with wj, and obtain

as previously
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d uww)h _wTI_,(WN)WN + wTI,,(Wl)Wl dfl(D+D_)q/2w]l _. (8)aT( , =

The dissipation thus helps to control the increase of the entropy. An example

where this applies is for periodic problems. For general boundary conditions,

the dissipation has to be modified somewhat in order to obtain (8), because

the scalar product for the summation by parts property is not the same as

the standard scalar product used for the dissipation estimate. For the sixth-

order base scheme, eighth-order linear dissipation (q = 4) is used and is

denoted by CEN66-D8 without entropy splitting, and CEN66-ENT-D8 with

the splitting.

Isentropic Vortex Evolution
(Horizontally Convecting Vortex, vortex strength/}=5)

Freestream:

(..... ) = (1,0);p. =p_ =1
IC" PerlgrbaltOnS=re addedIothe kmstR_ (not in enlmpv)

(6.,s_}=_._(-(v- v.)( .... ))

ST - ('r - l)_ = ,_,,

_ - 87r-------3--e

Computational Domain & Grid Size:

0_<= <]O&-5_<V'C._

80 × 79 Un=torm_)d

Periodic BC in = & V

{...,*..)

c_t_ of vor/¢:¢

Fig. 1. Vortex convection problem description.

3 Long-Time Integration of Smooth Flows

Extensive numerical experiments on a 2-D compressible inviscid vortex con-

vection with or without entropy splitting and/or nonlinear filter were con-

ducted in [16, 9]. They showed that entropy splitting alone and/or nonlinear

filter helps stabilize the scheme for a much longer convection time with al-

most perfect vortex preservation. Here we study the same problem for the

behavior of the high order linear numerical dissipation and compare the so-

lution with other well known methods. This is a pure convection problem

and the exact solution should retain its shape. The problem is described in

Fig. 1. The boundary conditions are periodic, and the solution is smooth, so

that difficulties coming from boundary conditions and from non-smoothness

of the solution are avoided. The computational domain is 10 x 10 with a

uniform 80 x 80 grid. The time scale is such that one period corresponds to

10 time units. Density contours without entropy splitting and without any

added dissipation (CEN66-RK4), are shown in Fig. 2. The solution after 5
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Fig. 2. Density contours after 0, 5, and 5.6 periods using CEN66-RK4.

periods has developed small, hardly visible, oscillations, and the computation

breaks down before reaching 6 periods. The oscillations are due to nonlinear

instabilities. Density contours using the entropy split form (4) (CEN44-ENT-
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Fig. 3. Density contours using CEN66-ENT-RK4 with entropy split parameter,

¢_=1.

RK4) is shown in Fig. 3 with fl = 1 (equal weight on the conservative and

the non-conservative part). For this problem, fl = 1 appears to be the best

choice. Almost perfect vortex preservation is nearly 10 times longer than the

unsplit case. However, the solution eventually breaks down (after 68 peri-

ods). For the entropy split method, it follows from (5) that the integrated

entropy should be constant. Figure 4 shows the entropy integral as function

of time for the computation in Fig. 3. The integrated entropy does decrease,
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and the estimate holds, but is too weak. However, we have found that there

are other values of fl where the computed entropy integral increases. _ does

not appear in the semi-discrete estimate, but is apparently important for the

time-discrete computations. It can be seen that entropy splitting retain the
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! 00 200 300 400 500 600 700

Time

Fig. 4. Entropy integral vs. time of CEN66-ENT-RK4 with d =???, _ = 1.

vortex shape from 5 periods to approximately 40 periods. However, in many

applications, for example computation of rotorcraft flows, one needs to follow
vortices for several hundred periods. We next investigate whether the use of

high order linear numerical dissipation can be used to further increase the

number of periods. Figure 5 shows the density contours of the sixth-order

............°l I: t

Fig. 5. Density contours by CENg6-DS-RK4 after 30, 150 and 200 periods.

base scheme with the eighth-order numerical dissipation added (CEN66-DS-

RK4). The solution is very accurate up to approximately 150 periods, but

the accuracy degenerates at later times. Although the accuracy becomes very

poor, the solution did not break down. The computation could be run up to
300 periods, the maximum time w'e used. The coefficient d in front of the

dissipation operator influences the behavior of the solution. The L 2 errors of
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thesolutionasfunctionof timefordifferentvaluesofthedissipationparam-
eterd are shown in Fig. 6. The error norm is computed as the sum of the

error norms of the four components. From Fig. 6, we conclude that there is an

initial phase where the lower the dissipation, the better the accuracy, and tile

error increases in a "regular" way. At later times the larger dissipations have

two points where the error increases quickly. For example, for d = 8 x 10 -a
the first error increase comes at 70 periods and the second at 190 periods.

We also conclude that for long-time integration, using the smallest possible

dissipation is not optimal. After 120 periods the dissipation 1 x 10 -a gives

a more accurate solution than the dissipation 5 x 10 -4. The smaller dissipa-

tion is insufficient to suppress the nonlinear instabilities. After 200 periods,

all dissipations end up in a state where all accuracy is lost. The norm of
the difference between the solution and the constant state with no vortex is

approximately 0.1. Results using both entropy splitting and the linear nu-

tO -_

10 "a

$10 <
=

u_10 a

10 -!

I0"

DO6+AD8

• d=Sx 10 -3

- - E_-3x 10 -3

_l-- d=lx I0 -a

50 I00 150 200 250 300
Periods

Fig. 6. Error vs. time for different dissipation coefficient d for CEN66-D8-RK4.

merical dissipation CEN66-ENT-D8 exhibit very minor improvement and no

improvement at larger period of the vortex convection over the CEN66-D8
case. A possible explanation is that the very delicate cancellation properties,

which keep the entropy split method stable, are destroyed by the numerical

dissipation as time progresses. A fifth order WENO scheme (WENO5-RK4)

[4], the so called DRP scheme [14], and a second-order accurate MUSCL
TVD scheme (IVIUSCL-RK2) were computed for comparison. The WENO5

scheme is a general purpose scheme suited for flows with shock waves with

no parameters to tune. The DRP scheme is designed for aeroacoustics. It is
fourth-order accurate in space and second-order in time. Nonlinear instabili-

ties are suppressed by a low order numerical dissipation term with a tunable

parameter. We have tried to choose this dissipation strength as small as pos-

sible while keeping the scheme stable. Density contours are shown in Fig.

7 after 150 periods, and in Fig. 8 after 200 periods using the same contour
levels. The MUSCL-RK2, and the DRP scheme are extremely diffusive. Both
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(a) IC (b) MUSCL (c) DRP (d)CEN66-D8 (e) WENO5

Fig. 7. Comparison of different methods: Density contours at 150 Periods

(a) IC (b) /vIUSCL (c) DRP (d)CEN66-D8 (e) WENO5

Fig. 8. Comparison of different methods: Density contours at 200 Periods

the WENO5 and the CEN66-D8 give better results. The error as function of

time for the different methods is shown in Fig. 9. The error of MUSCL is not

shown, instead the dashed curve shows the error of the entropy split sixth-

order scheme, with fl = 1, and no numerical dissipation (CEN66-ENT). After

10 o

10'

'_0

Error vs Time Four OifferenlSchemes

50 100 150 200 250 300
Periods

Fig. 9. Error vs. time for different methods.
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200 periods, the result from the WENO5 scheme looks more pleasing to the

eye, but as shown in Fig. 9, its error norm is larger than that of the centered
scheme. The centered scheme loses accuracy due to dispersive errors, while

for the other schemes, diffusive errors dominate. Tile performance of nonlin-

ear filter scheme (including the use of the dissipative portion of WENO5 as a

nonlinear filter) computations (same base scheme) are slightly more diffusive

than CEN66-D8, and is reported in [9, 16, ?]. Studies on the blending of the

linear dissipations with the nonlinear filters are reported in [17].

4 Nonlinear Filter/Numerical Dissipation for

Discontinuities

The linear numerical dissipation used in the previous section is not strong

enough to suppress the spurious oscillations due to the presence of shock and
shear waves. A filter approach using nonlinear dissipation as a post processing

filter, which is applied after each time step, is employed [15]. The filter consists

of a conservative step

1= - -

where u* is the solution computed by the high order base scheme at time level

n + 1, and )_ is the ratio of time step over Ax. For the numerical example the
filter flux h'is obtained from a second-order TVD scheme by subtracting the

centered difference part and inserting a sensor, i.e.,

, TVD

h_+_/2 = sj+_/2(hj+_/__ - (]5+1 +/j)/2).

The h2:Z isthenumericalofasecond-orderaccurateTVDscheme
This TVD-fiux typically contains flux limiters and Riemann solvers. The

sensor sj+t/2 is made such that the dissipation is switched on only near
discontinuities. One example is to compute tile local wavelet coefficients of

the flow field by letting sj+_/2 be close to unity where the wavelet coefficients
show that the solution has poor regularity, and taking sj+_/2 to be zero

otherwise. See [9] for details. Computations using the dissipative portion
of the WENO5 schemes or seventh-order high-resolution schemes were also

considered. See [18] for an example using the WENO5 nonlinear dissipation.

5 2-D Shock�Shear�Boundary-Layer Interaction

Extensive grid refinement for shock-turbulence interactions, a complex multi-
scale viscous combustion flows and a shock/shear/boundary-layer interaction

are reported [17, 10, 11, 1]. Here we illustrate selected results for the complex

shock/shear/boundary-layer interaction. An ideal gas is at rest in a 2-D box
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0 < x, y _< 1. A planar shock of Mach 2.37 located at x = 1/2 at time zero

separates two different states of the gas. The 2-D compressible Navier-Stokes

equation with no slip BCs at the adiabatic wails is used. Tile solution will
develop complex 2-D shock/shear/boundary-layer interactions, which depend

on the Reynolds number. The dimensionless initial states given in [1] are

PL = 120, PL = 120/7, pR = 1.2, PR = 1.2/7,

where PL,PL are the density and pressure respectively to the left of x = 1/2,

and pR,PR are the same quantities to the right of x = 1/2. All velocities are

equal to zero, 3' = 1.4, the Prandtl number is 0.73, and the Reynolds number
is 1000. All the computations stop at the dimensionless time 1 after the shock

_SCL _OOC_C_O

i0_2 02!

_0_15 _

_!- _g o, 0, 0,
x

(a) 1000 x 500 grid (b) 2000 x 1000 grid

MOSCL 3000wl

o: L9 /t

x

MUSOk. 4C00_ _00

o:: o . !

°ihE 
_4 O5 O_ O7

(c) 3000 x 1500 grid (d) 4000 x 2000 grid

Fig. 10. Grid refinement study: Density contours of MUSCL-RK2.

wave has reflected from the right wall and has almost reached the middle of

the domain, x = 1/2. Due to the rapidly developing symmetry flow structure,
a uniform Cartesian grid with the lower half of the domain is used. A grid

convergence study of the sixth-order method with wavelet as the sensor to
filter the solution using the nonlinear numerical dissipation (WAV66-RK4) is

shown in Fig. 11. The same computation using the MUSCL-RK2 is shown in

Fig. 10. Except for the largest vortical structure, the 1000 x 500 grid solution
of WAV66-RK4 captures' the overall flow structure of a 4000 x 2000 grid,
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whereas the MUSCL scheme is still not convergent ever at a finer grid of

4000 x 2000. Since the filter is only applied once after each time step, the

computational cost of WAV66-RK4 is almost the same as the computational

cost of MUSCL-RK2 with the added advantage that the physical viscosities

were taken into consideration by WAV66-RK4.

WAV86 100(3XSOQ WAV66 2000x1000

O3 ....... _, , 0 a . . _- _ )

°'r

x

(a) 1000 x 500 grid (b) 2000 x 1000 grid

WAYS6 3000_ I

o3 , . , _i" ", ol

<,: _ 7

°iE
oo

_4 05 08 07 08 09

WAW8 _00C_2000

_4 O5 O6 0_7 0S 0_
x

(c) 3000 x 1500 grid (d) 4000 x 2000 grid

Fig. 11. Grid refinement study: Density contours of WAV66-RK4.
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